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WL-TR-64-104
ABSTRACT

A number of commonly used finite-difference analogs to partial derivatives

in twvo space dimensions are investigated, and a few variations are proposed.
The accuracy of these analogs is assessed by obtaining numerical results for
deformations for vhich the analytical gradients can be evaluated. None of
the analogs appeared superior for those deformations which were investigated,
and it appears that a choice may be made on the basis of computational con-

venience.
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SECTION 1
INTRODUCTION

One of the principal difficulties in constructing
finite difference analogs to the Lagrangian equations of
compressible fluid motion in two space dimensions is the
choice of finite difference representation of the spatial
derivatives in the momentum equation. A number of different
expressions have appeared in the literature, but there seems
to be little information available regarding their relative
merits.

Finite difference representations of spatial gra-
dients should introduce minimal truncation errors. However,
some other properties are often considered to be more im-
portant. As a Lagrangian mesh becomes severely distorted,
it is found that some finite difference expressions lead to
accelerations in the wrong direction. This leads to an in-
stability and eventual stoppage of the computer. Such se-
vere distortions sometimes occur in relatively unimportant
areas of the flow, and it is often considered more impor-
tant that a finite difference expression lead to accelera-
tions of the correct sign than of the correct absolute mag-

nitude.

It has occasionally been argued that finite dif-
ference expressions which show large truncation errors lead
to smoother solutions, and are preferable on this account.
It may be noted that truncation errors serve to increase
the acceleration in areas of high gradient. In this re-
spect truncation operates in precisely the same way as ar-
tificial viscosity, which is formulated to provide an ad-
ditional acceleration in areas of high gradient. It seems
preferable, however, to choose the finite difference




expression which has least truncation error, leaving smooth-
ing of the solution to artificial viscosity terms over which
one can exercise some control.

Several common finite difference expressions are
discussed. In order to investigate truncation eirors the
following procedure was followed. A quadratic deformation
was postulated, for which the density change could be found
analytically using the principle of conservation of mass. On
assuming an equation of state, the associated pressure change
could be found analytically, and the acceleration found by
applying the principle of conservation of momentum. A
Murnaghan equation of state was used. The corresponding de-
formation of an initially square mesh was calculated for the
same quadratic deformation, so that the acceleration could be
computed using the finite difference expressions. The be-
havior of the finite difference expressions after crossing
of cell vertices and after cell inversion was also investigated.




SECTION II
DIFFERENTIAL EQUATIONS

2.1 Tensor Equations

Denote the spatial (Eulerian) coordinate x; and
the material (Lagrangian) coordinate.xx, where we use majus-
cules to refer to the original state, minuscules to refer to
the current deformed state. At time t=0 take s’ - X:({;.
Consider the deformation

x¢ e oxi (X' x* x?) 2.1
with Jacobian J given by
J = ”‘fr 2.2
where ( ),z is the covariant derivative with respect to the
> L
The tensor equation of mass conservation is simply
f’ = 7 f—;f 2.3

where p is the density, p, the initial density at time t=0 and
dv and dV corresponding volume elements in the deformed and
undeformed states. The tensor equation of momentum conservation
in a perfect fluid is

[
ai o= P P,‘ 2.‘0

where a‘ is the acceleration vector, p the pressure and ( hi
is the covariant derivative with respect to the x¢, It will
be useful to write this equation in the equivalent form

z
ai.~.":P;1Xﬁ. 2.5
or since
) S “"“t;’ (x'r) 2.6




a, c-F'-. P,y cofactor(x 2% 1.
where we have used equation 2.3.

We will choose a quadratic deformation (equation 2.1)
in the form

xb o el XTX" + di X7 + b 2.8

where the coefficients ¢~‘.,m , df, and b* are arbitrarily
chosen constants. It can be seen that the &* introduce a uni-
form translation while the df,introduce a bomogeneous deforma-
tion and rotation. These terms do not lead to accelerations
and are retained for convenience in controlling the size and
position of the deformed meshes. Since we have not restricted
ourselves to small deformations the c¢!,, and d‘, cannot be in-
terpreted easily as rotations and deformations, but it may be
noted qualitatively that the diagonal terms introduce stretches
in the corresponding coordinate directions, while the symmetric
parts of the off-diagonal terms introduce shears, the anti-
symmetric parts rotations. The formulation of the deformation
in equation 2.8 is therefore quite flexible in producing almost
any desired deformed mesh shape by appropriate choice of con-
stants.

Once the defoimation (equation 2.8) has been speci-
fied, the density distribution may be found from equation 2.3.
It is necessary to postulate a relation between p and p before
finding the acceleration. The particular form of this relation
does not affect the conclusions materially. An 'equation of
state'" in the Murnaghan form has been chosen for its simplicity

pe x{(£) -1}

or using equation 2.3

pe= k(T7-1) 2.9




where k and Y are material constants. We are principally con-
cerned with relatively incompressible materials, and constants
appropriate for aluminum have been used in the calculations de-
scribed later (i.e. k= [.9%10"dyn ‘cm2,7=4 , /= 278 gnm cm3).

2.2 Physical Equations

Only two-dimensional rectangular Cartesian coordinates
( x, = ) and two-dimensional axially symmetric coordinates
( x, z where we have written x for the radius) are considered.
The continuity equation (equation 2.3) is usually taken in its
second form

2 ., dv
Lo dVv 2.10
while the momentum equation (equation 2.4) takes the form

a = -3 £

.14 2304
a; = "]5 iz

Defining o=l for the rectangular case, and ®= 2 for

the cvlindrical case, the Jacobian for both cases may be written

dx ox
X 0 dZ

o=

RN

= 2z
oX ¥4

25012

Thus the alternate form of the momentum equation
(equation 2.7) becomes




2.13

azz-]—;;{a%’-):_f - aé.)l(’éé;}(ic_)a-l

2.3 Analytical Gradients
Specializing to two-dimensional rectangular Cartesion

and cylindrical polar coordinates, the deformation transforma-
tion (equation 2.8) retains only the following terms

X = C" x’I * C'l xz * C,, zl

23 du x * d') z * bl

2.14
2= € X"+ (5 X + Cyy

+ d" X + Au Zz % bJ

Thus the Jacobian of the transformation can be writ-
ten (from equation 2.12)

y = (AD-8Bc)E™" 2.15

ae 2B e 26X+ c,2 +d,

1a

B &% 2 2¢,Z *cuX + dy




%; = 2 CJ, X i C.Il z s d.'l

o
)

nga--zE :2c332+c’:x *J,J

CMX" C,zz + d,, +((,,Zl+d,,2+ b,}/x

Then density and pressure are given by equations 2.3
In order to find the accelerations, it is

and 2.9 respectively.
necessary to use the second form of the momentum equations,

which may be written
X [ 3P 5 | 2P
Ay = ° 3 X D d <:.}
; 3P _Q_P 2.16
£ ar _
ar= = 1z f T ox B}
Note that differentiation of equation 2.9 leads to
2 ~(Yr1) 2F
5 e ox
) ) 2517
dP -(v+1) oF
52 = TYk7 Iz
so that equations 2.16 can be conveniently written
y k £ ar g_fc}
a' ,;J-rfl ax az
2.18
_IkE™ Q—Iﬁ-f—fﬂ}
%z © P OZ X




where the derivatives of J are easily found by differentiating
equation 2.15.

Once the values of the 12 coefficients are specified
in the deformation transformation (equation 2.14) it is a
straightforward task to evaluate the density, pressure and ac-

celerations at any particular point specified by its initial co-
ordinates ( X, Z ).

Finally the magnitude of the acceleration vector is

a = [a + a 2.19

and the angle between the acceleration vector and the =z axis

is

i 2x
0 ‘r‘t.n ag 2.20




SECTION III
FINITE DIFFERENCE EXPRESSIONS

A number of finite-difference analogs to the equation
of mass and momentum conservation have been evolved. An attempt
is made to collect brief derivations of some of these here.

Quantities are considered only at a finite number of
locations in space, initially distances 4X and &2 apart. The
initial X coordinate after the I™ increment 4X is denoted Xg,
and the initial Z coordinate after the J™ increment AZis de-
noted Z, . In effect the material is covered by a finite co-
ordinate grid which deforms with the material (Fig. 1). Co-
ordinates x and xz at time t for the point/KJ-, 527 are
denoted Xy , X130

While positions, velocities and accelerations are con-
sidered only at the vertices of the finite difference grid, den-
sities and pressures are considered averaged over the meshes,

and are denoted pr,, 7,4, , etc.
)

In developing the finite difference equation, it is
considerably more convenient to use the notation of Figure 1,
translating the equation into indicial notation befcre program-

ming for the computer.

3.1 Mass Equation

The second form of the mass equation

dv
P.PO 2-‘—,. 3.1

can be set into finite difference form by considering the de-

formed mesh to consist of quadrilaterals. The current area of
mesh 1 (Figure 1) is then

Ave i {(%u- % Nzo-2a) - (24 -2. X % -x4) } 3.2




while the original area A ° at time t=0 is found by sub-
stituting X and Z for x and 2 in equation 3.2.

Both the rectangular Cartesian and cylindrical polar
cases may be written down simultaneously by defining « a |
for the rectangular, « ¢« 2 for the cylindrical cases as be-

fore. The mass equation becomes
m,
P' H. ( ED )."
where X, 1is the radius of the centroid of the area A,, and m,
is a mesh constant defined as

m, = be ﬁl. ( il)‘.' 3.4

3.3

The radius of the centroid appears only in the cylindrical case.
A reasonable approximation for moderate distortions is

2,-;’-(*,,4::,. ¢x.+x,) 3.5

N A better, but lengthier, expres-
sion may be obtained by dividing
the quadrilateral into two tri-
angles, i.e.,by taking

. m 3.6
B R (Z) A (R

where

A - 1 {(’a'lnX"r"oo) HERE M ED -z,,)}

po (52l = (s ok 2

X, * ' (‘n’xn *xo)

xL"/J(X,*x.*"A)

10




and where m {s given by
- «-] - o~
2y fO{ ﬁ:(x‘_") * ﬁ“o (x“') ] 3.7

For the rectangular case, & « /], and these equations
are identical to the previous ones, (equations 3.3 and 3.4).

It may be noted parenthetically, that the same results
are achieved by starting with the alternate form of the mass
equation (equation 2.3) as may be expected. Terms in the Jaco-
bian (equation 2.12) may be written in finite difference form as

Ix _ Xg ¢t Xy x,¢x,)
X ASX 2 X
9x q =t ( Xy * X Xp “Xo) 3.8
2 - PY
etc.

When these are substituted into equation 2.12, and terms are ex-
panded and simplified, we obtain

J- gl/axéf. {(" XN Zo-2n) - (242 [ X0 = %a) } e g

When this is inserted into equation 2.3, we immediately arrive
again at equations 3.3 and 3.4.

3.2 Momentum Equation

A variety of difference analogs have been given for
the pressure gradient terms in the momentum equations (equations
2.11). Some of these are described in the following.

3.2.1 Taylor's Expansion

The pressure is known at discrete
‘r‘”'-j' points 1, 2, 3, 4 surrounding
) ' point 0 at which the pressure
JL-"-JQ gradients are to be evaluated.

11




One method is to apply Taylor's expansion between points 0 and
1, 0 and 2,etc. to obtain four equations of the form.

Ppe Py o (% -%) )axp + (=, ~2,) bgip

3.10
a‘p 2%p ',
#;’(8,-!.)“—,:" Y (' ‘xQXz:"zo}a' oz 2 (zu 20}2 dxzr L AL

where terms of third and higher order in ( x,-%) and (z, ~2Z,)
have been omitted. Kolsky'proposed solving this overdetermined

system of equations for }5 and }f by first solving for (A -A)
and ( P.~-Ps), obtaining the two equations

() = 2 (x-x) + Z(z-2)

* é__‘P z-z}J
¢+ )X‘ {x } 13 azx ( ‘ J x13

+ ;': )%}Pz [(X,'x.,) gzu t (Z,-ZJ) Jll)] +

(Pi-n.) - 32 (xoxa) + $F (2-2)

3

b J
+ 53{.(";"‘4) 5:;4 ¥ 3—;5 (x;-z.‘j un.

o4 i" 3%:3% [(x‘ =Xy) ;zu -(z -24) ;Xu] +

where J',,, - i'(xo*xl) - X,, etc. are measures of the assym-
metry of the mesh. Omitted terms are of second and higher order
in the mesh size ( x,~%;),etc. Providing the mesh size is

12




small, these higher order terms are negligible compared to the
terms retained above. The above equations may now be solved

for the gradients

son-p 5 = -7 [(Aodnm) - (nendn-z)) « R,

3.11

¥ . f(poplnn)-(menkn)) ok,

|
LS P 2Ap

where

A = z‘t {(Z.'Z,X"a‘x,) -{x,-x,)(z.-z4}}

It is ceen that A represents the area of the quadrilateral
1 2 3 4.

The remainder terms R, and Ry involve products of
the mesh size and the st(e.g., (x, - X, ) d‘,,J , etc.). If the
mesh is nearly symmetric, these terms are negligible compared
to the terms which have been retained. It is clear that the
error terms vanish for an undistorted mesh, but become progres-

sively larger as the mesh distorts.

Equations 3.9 require coordinates of the centroids of
quadrilateral 1, 2, 3, 4. Kolsky simply used the approximate
equation 3.5, obtaining the final equations

[}
a' .’TﬁF}- {(P‘-P‘ch-z” +2.-z, fz‘- -Z,,)

~(P0-PJX2¢-ZA 'sz~z. "Z‘ ‘2‘}}
3.12

a; ;(%—,P}—{(Px"PQIxc ~Xp +t Xg=Xp ¥+ Xy —x“}

“(P-p [ Xc-xq + Xp- Xg * X "‘6)}




There are two possibilities for representing the denominator
(AP ) in equation 3.12 in a simple form.Kolsky used '

(Ap) = (AP + AR + AP + Asp) 3.13
A second expression follows from equation 3.3 for the cylindri-
cal case

(ﬂfj = é(m, + My + my o+ m,}/(x,)"' 3.14

where x, is used as an approximation to the centroid of the
quadrilateral 1 2 3 4., Equation 3.7 is used for the m’s. For
certain serious distortions this may lead to considerable crror.
For the rectangular case, equation 3.14 is equivalent to equa-
tion 3.13.

It may be noted parenthetically that the same results
are achieved by starting with the alternate form of the momentum
equation (equation 2.13), as may be expected. The Lagrangian

pressure gradients may be represented by’”’
PY 4 A, G . T Pn&}
X = ax ( = Y 3.15
e ( P+l _ P.u%)
IZ AZ a 2

Inserting these together with equations 3.8 into equations 2,13
and simplifying,

- (x/x)"" {(&-P.X*:‘z.l) -(n, -P;)(h-%/}

".1}:. AX o2

3.16

o-|
L7 M TR PR )

With the aid of equations 2.3 and 3.9, (the latter written for
quadrilateral 1 2 3 4), it is seen that the above equations 3.16
are exactly equivalent to the previous result, equations 3.1ll.

14




3.2.2

'"Midpoint'' Method

[
«“¢(Ap)

“e(Ap)

Amurud and Orra noted that Kol-
sky's scheme led to reversal of
signs of the accelerations when
the mesh became sufficiently dis-
torted so that quadrilateral

1 2 3 4 became inverted. They
proposed applying Taylor's theo-
rem between points 0-5, 0-6, 0-7
0-8 as shown, in conjunction
with a test and approximate cor-
rection procedure to prevent in-
version of quadrilateral 5 6 7 8.

Substituting subscripts 5, 6, 7, 8 for subscripts 1,

2, 3, 4 in equations 3.11 and writing
Psr ® i ( P, e Pa) etc.

g 5 3 ( Xa+ %) etc.
the following equations result

{(p,-p,)(z, -z, ¢+ Zp5 ~2yp)

-(P;*P‘in -Z + Zp - z.)}

3.17

{(P,-pJ)(x, - X, + Xg =Xp)

‘(Px‘Pqun T X T X “X.)}

The same expressions may be used for (ﬁf:) as before (equations
3.13 and 3.14).

lr




3.2.3 Green's Transformation

’f A different approach to the
/‘1‘,- »-\-‘1'\ problem of finding pressure
| | '
'F\ : ' />D gradients follg&:s from Green's
\{(___ ' Transformationy’® In two dimen-
2 \k y sions
c
§pn, ds = J Pida 3.18
J

where n; is the outward normal vector to the circuit f enclos-
ing the area A, and the comma denotes covariant differentia-
tion. In component form, we are led to the two equations

fpdzzf;a—:dﬂ S(gf)m.ﬂ

L 4

'de" fjdﬂ -(aéze)nv:'ﬁ
b4

Choosing the circuit A B C D, and considering the
pressure on side A B to be given by its average value p, etc.,

3.19

a, = -#%{ '277,‘7,') {Ps (z4-25) *P;(Z. -z,,j+)3(z‘-2.)+P, (zo‘zc)}

3.20

a,*'# 2 (ﬂlf} {P' (-" .) *Px("."‘n)*Ps("c z.) "‘Pq("o xc)}

where A is one half the area of the quadrilateral ABC D. A
reasonable approximation to the denominator is given by equation

3.13 or equation 3.14. For irregular distortions, a better but
much lengthier expression would be

ﬂf = i’(ﬂ,'ﬁ' + ﬂ;'f. +A'p, o+ ﬂ;f.) 3.21

16




where A,’ is the area of triangle A O D etc.

Variations of equations 3.20 suggests themselves. In-
stead of representing (AL ) by equation 3.21, we write

. - { P (2a-2)  p(24-24) . Blz-zs)  pz _,‘_;}

2 A, p, 2A,.A 2 A, P 2A4H

3.22

a,'-{___.__P'(x""’)+ Po(xe-Xa) | p(x.-xs) ., Paxe-x)

2 A, £ 2 A, A 2 A5 P 2 Aq Py

where A, etc. are the areas of quadrilaterals A O D H etc. In
these equations the contribution of each mesh to the accelera-
tion is independent of the other meshes. We can also use equa-

tion 3.3 to write
M'

ﬂ' P’ o ('x-‘)‘-‘ 3.23
etc., where we use equation 3.5 for 3, , in each of the above
terms. A further variation is to write

ﬂ' P = pl ﬁ"P, 3.24

etc., where ﬂ,'is the area of triangle A O D, in each of the
above terms.

It may be noted parenthetically that if circuit 1 2 3
4 is chosen, the results obtained previously by means of Tay-
lor's Theorem are obtained. The average pressure on side 1 2
can be written 1"( P,+ Pr) . Thus, applying equations 3.19
to the circuit 1 2 3 4,

0y = a5 [(Prpdzcz) + (R Pk 1)

+(PreP)ze-25) + (P, +P.Xz,-z,)} .
{(Puf,)(an,/ NIXINEEDN.
s (by+ P N2a-%) + (Pepy)(x -x4)}

-

2Ap

a, *

17




where A is the area of quadrilateral 1 2 3 4. Upon simplifica-

tion and interpolation of > and x these reduce to equations
3.42%;

Green's Transformation has also been used to obtain
expressions of the gradients in a triangular mesh! Triangular

meshes are generally found to be anisotropic and are not con-
sidered here.

3.2.4 "Force Gradients'' Method

An expression for the gradients
rived in several ways. For the

shaded zone, Lagrangian gradients
| may be expressed as

(éf P, = Ps (25}) Zp %

X 4 . X, =Xq 9z /, ) Zo-Zo
Writing similar expressions for the zone 2 B 3 0 on the opposite
side of 0, and interpolating, the x gradient at 0 can be
written (from equation 2.13)

(R P N2 %0) (2 (B K2e-2) | £ |

w7 ey (7 sl (F)
3.26

(P.=PY2a-2) [Z]™ " PN 2o-2.) [ X%

) (;.-;;%X. 'j(o) 7 )r ) ((;. -P,f(x.-xc j (7 )7 | }

with a similar expression for a,. Two ways of representing the

denominators of the terms above follow from the mass equation.
We note that the denominator of the first term (X, - Xy) (Z,~2,)
represents the undeformed area of the shaded rectangle, denoted
by ( )'. Using equation 3.4

f.(x"xoxzo“zo)(i}.-'s me = '-'-('"'""9)

18




Proceeding in this way, the accelerations become

a, = (n ; ::')f::;zo) (Xo;"‘O} “« l’a ;:.:)f::;zn)( XQ;I.)C-D
e S A TR

3.27

a, = (7 -8')(:‘;;)’0) ("o; x.)'-' + (P 2:’51)’(;:)‘%)( X.;Jt.)"‘l

RS CEOYENC Y D) [ SO E

(m +m) 2 (my+my) 2
where we have simply approximated i, = i(x, ’xo) etc.

Alternatively, using equation 3.3 these equations can
be put into the form

L. e zemz) (R X ze-24)
) LR, tP As LA+ A A

(m-rlzn-ze) ,  (Pe= 2K Zem%c)
ﬂﬂ,fﬁﬂ‘ foﬂo ’BHJ

3.28
Q (PI‘PO)(xo‘Xo) e (P;-p,)(x.-x,)
z

RA + P Ay P AL+ B A

- LP'-P"XX"‘X") (P4'R)xxo"xc)
P'ﬁl *P;ﬁl Ponq*ﬂﬂ.,

19




The two approximations made in the denominators of
equations 3.27 and 3.28 are analogous to the approximations
made in eauations 3.14 and 3.13.

The above equations (3.27 or 3.28) lead to difficul-
ties for certain serious distortions in which one or more of
the segments OA, OB, OC, or OD approach zero length. More com-
plex equations, apparently derived on a similar basis, but in-
volving multiple interpolations to overcome this drawback, have
been reported.

3.2.5 Virtual Work Method

£ a H Goad10 proposed a method of obtain-
o . ing the apparent force, and hence

B - p the acceleration, on a mass point
‘J ‘4 located at 0 by the principle of

F e 6 virtual work. Suppose that the

point 0 is displaced by an infinitesimal vector displacement Ssh
Work is done on the surrounding four cells, and the energy of

the system is modified by an increment SE'given by

SE= 2 (P dstu,),
where v is the cell volume, and the comma denotes covariant dif-
ferentiation. Thus a force F, acts at 0 given by

JE = F_ Jds*
Thus .
Fk % i;c (P‘f’k)i
and the acceleration at 0 is therefore

A LS
a, * ;5- = ;‘g(Pu;k)t
where m is the mass which is thought of as being concentrated

at point O.

Using the second method of finding the volume of a
mesh, (Subsection 3.1) for mesh 1 we have within a factor (2m)*x1)

vim (AR Aul( )]
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where A,, % etc. are given following equation 3.6. To find

the derivatives of v , we consider X, , z, variable with the

other cell vertices held fixed, and obtain for the
for cell 1

(poa) = 37 { (B5222)7 (2aez)
+ j(«-:)[(z,—z,Xx, -,) -(z,-z.,(x,~x.)]}

while for the z direction for cell 1

ponl, = 47 f (32 (x, 0}

lhe mass m associated with point 0 may be taken to be
(within a factor (2m)™™")

x direction

mae g (mom rmy +m,) 3.29

where m,6 etc. are given by equation 3.7.

Summing terms for all four meshes

" - ;_,; {P: [(x. . ;.¢ x‘).-'(z,-l.) . '—‘J;'[(z.«2,130-’6)'(20‘201""1')]]

N (L B |

() )« 5 k) e 2ok
3.30

+P4[( Ll x‘ : x,) (Z,, -z.;) + !‘J_‘.'[(z‘-z,Xx,-x,) -(Z.-%X'c‘*o)]]}

. ;'—{P, (x.*’;.oxa)"’(x‘_xoj + Pu (x.fx,+x.)"'(x._x‘)

3

o ( Xy + ;f.’ x‘)”(x‘-x.) . Py (x.o- x"x‘ym'(x, -x‘}}

3
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For the rectangular case,as ), and the equations reduce identi-
cally to these obtained by Green's Transformation (equations
3.20).
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SECTION 1V
RESULTS AND DISCUSSION

Results of a number of calculations are given in this
section. Both the analytical and finite-difference equations
were programmed for computation on an IBM 7094 Computer. Results
are shown in the figures, where results of the various finite
difference equations are labeled as follows.

1. Taylor Expansion Eq. 3.12 with Eq. 3.13
2% Taylor Expansion Eq. 3.12 with Eq. 3.14
35 Midpoint Method Eq. 3.17 with Eq. 3.13
4. Midpoint Method Eq. 3.17 with Eq. 3.14

5. Greens Transformation Eq. 3.20 with Eq. 3.13
6. Greens Transformation Eq. 3.20 with Eq. 3.14
7 Greens Transformation Eq. 3.22

8. Greens Transformation Eq. 3.22 with Eq. 3.23
9. Greens Transformation Eq. 3.20 with Eq. 3.21
10. Greens Transformation Eq. 3.22 with Eq. 3.24

l11. Force Gradients Eq. 3.28
12. Force Gradients Eq. 3.27
13, Virtual Work Eq. 3.30

. ] =
In each case the accelerations ¢  and a were converted to mag-

nitude a and direction & by
a = Jla")* + (a®)Y

al
O = arctan

4.1

and percentage errors in magnitude, and angular errors in direc-

tion compared to the true magnitude and direction were found.

It is difficult to present results to illustrate the
growth of the error as a function of some measure of deformation.

Since the equation of state (equation 2.9) was nonlinear, the
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results, expressed as a percentage of true acceleration, would

be affected appreciably by the addition of a uniform (hydrostatic)
compression. Moreover,in the cylindrically symmetric case (&=2),
the results would be heavily affected by a uniform translation

in the radial (x) direction. In order to eliminate these effects
to some extent the following procedure was adopted. The quad-
ratic coefficients (¢ ) were adjusted incrcmentally in some ar-
bitrary manner. The diagonal linear coefficients ( d, , dj3)
were then given values such that the mesh with largest area was
reduced to the area it had before deformation. Finally the co-
efficient b, was adjusted so that the radius of the mesh vertex
with minimum radius was set equal to the minimum radius before
deformation. This procedure did not eliminate the effects of
uniform compression or radial translation, if indeed such would

be desirable, but ensured that the effects of uniform compression

or translation did not dominate.

It may be noted that if only ¢, , A and b, are
adjusted, then the deformation is one-dimensional, i.e., there is
no deformation in the z direction. It is easily verified that
for such a deformation all of the finite difference equations
immediately reduce to the well known second order one-dimensional

difference analog for «s|

a’'s ; fe= B 4,2
I{ P-("n"‘o)’ﬁ('o”'f)}
where we note that p, =2p, , p, » p, etc. It is therefore

possible to check the error of the one-dimensional difference

analog directly.

Results are shown in Fig. 2, where the percentage error
is plotted vs. the coefficient ¢, . Deformed mesh shapes are
also shown to give a physical picture of the deformation. It is
quite clear that the error grows to very large proportions as the
distortion becomes large.
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Results of a number of calculations in which several
of the quadratic coefficients were varied incrementally are
shown in Fig. 3 through 8 (for =/ ). In cach case the next
increment in deformation coefficients led to inversion of one
or more meshes, i.e.,one or more mesh arcas became negative.
Errors below 17 were not considered significant. Deformed mesh
shapes arc again shown to allow the deformation to be visualized.
The errors grow verv rapidly as the deformation becomes extreme.
The difference in error of the various finite difference equa-
tions 1s, in most cases, unimportant compared to the magnitude
of the error. However, results labeled 5-13 are generally
somewhat better than these labeled 1-4 (Taylor Expansion and
Midpoint Method). One exception may be noted in Fig. 7 where
method 10 (Eq. 3.22 using Eq. 3.24) is much better than all the
others. In all cases the error in angle did not exceed a few
degrecs for the most extreme deformations, and was quite neg-
ligible over most of the range.

Similar results for a=2 are shown in Fig. 9 through
16, the errors in both magnitude and angle being shown. Defor-
mations correspond to those in Fig. 3, 4, 5 and 7 respectively,
The errors in magnitude are generally smaller than the corre-
sponding errors for o = ), None of the errors approach zero
as the deformation is reduced. This may be traced to the ef-
fect of radial translation, and is not a serious concern. It
is clear from the results that no one finite difference equa-
tion is clearly superior, and errors of 20-30% in magnitude and
20-30 degrees in angle might be anticipated under certain con-

ditions with any of them.

While crossing of mass points could be observed by
suitable adjustment of the quadratic coefficients, this occurred,
for the combinations usecd above, during very severe distortions

where the error was extremely high., The cffect of crossing of
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mass points is somewhat more easily illustrated by choosing a
different deformed mesh shape for which the true acceleration
was not found. Several stages in crossing of mass points may
be distinguished.

In a normal mesh, all included
interior angles are less than
Normal 180? as shown.

The first stage of crossing oc-

curs when one included interior
angle exceeds 180° This may be
Re-entrant
termed a re-entrant mesh.
The second stage of crossing
‘;HHHMHHMH occurs when one mesh vertex
o g crosses an opposite side. The
chtizoz ;7#' mesh then takes the form of two

triangles, one of which has a

T' negative area. This may be

Inverted termed a schizoid mesh.
Schizoid
If the deformation proceeds far
— enough, the net area of the mesh
Inverted becomes negative. This may be

termed an inverted mesh.

The effect of each stage was investigated by solving
the finite difference equations for the mesh configurations
shown in Fig. 17. Configuration (a) corresponded to a normal
mesh. The acceleration was directed to the original position
of the central vertex, for « = | | as might be expected. (For
o = 2 , the net radial displacement of the centroids of the
meshes leads to an acceleration directed in a slightly different

direction).

In configuration (b) the upper left-hand mesh becomes
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re-entrant. All finite-difference equations gave the expected
acceleration direction except 10 (Eq. 3.22 using Eq. 3.24) which
showed an error near 1807 This reversal in acceleration would
lead to an accentuation of the deformation, and hence instabil-
ity. In configuration (c) the upper left-hand mesh became
schizoid. Here both 9 (Eq. 3.20 using Eq. 3.21) and 10 (Eq. 3.22
using Eq. 3.24) showed an acceleration reversal, the other
finite-differcnce equations giving the correct direction. 1In
configuration (d) the upper left-hand mesh has become inverted.
All equations gave an acceleration reversal. (This is traceable
in part to the fact that the density in the inverted mesh be-
comes negative. The computer library routine for raising a
number to a [loating point exponent then gave a negative pres-
sure, [rom equation 2.9, which was sufficiently large to out-
weigh the contributions of the negative pressures in the other

expanded meshes.)

In assessing the results of the calculations presented
in this report, it scems that none of the finite difference
cquations which were used are notably superior in accuracy. All
except 9 and 10 (Eq. 3.20 using Eq. 3.21 and Eq. 3.22 using
Eq. 3.24) showed no reversals in direction of the acceleration
until at least one mesh area became negative. At this point
all methods failed.

While the present calculations are hardly extensive
enough to warrant drawing general conclusions, it does appear
that any of the methods are equally satisfactory, provided a
sufficiently small mesh size is chosen. It seems appropriate
to choose the method which requires the least number of arith-
metic steps for solution. Equations 3.20 scem most suitable

for this reason.
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